Copied to
clipboard

G = C42.19D6order 192 = 26·3

19th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.19D6, C8⋊C410S3, (C2×C4).26D12, (C2×C8).159D6, (C2×C12).37D4, C2.D2438C2, C4⋊D12.3C2, C2.8(C8⋊D6), C6.5(C8⋊C22), (C4×C12).4C22, C12.6Q82C2, C6.8(C4.4D4), (C2×D12).7C22, C22.98(C2×D12), C4⋊Dic3.9C22, C12.224(C4○D4), C4.108(C4○D12), (C2×C24).313C22, (C2×C12).734C23, C2.13(C427S3), C31(C42.29C22), (C3×C8⋊C4)⋊19C2, (C2×C6).117(C2×D4), (C2×C4).678(C22×S3), SmallGroup(192,272)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C42.19D6
C1C3C6C12C2×C12C2×D12C4⋊D12 — C42.19D6
C3C6C2×C12 — C42.19D6
C1C22C42C8⋊C4

Generators and relations for C42.19D6
 G = < a,b,c,d | a4=b4=1, c6=a2b-1, d2=a2b2, ab=ba, cac-1=ab2, dad-1=a-1b2, bc=cb, dbd-1=b-1, dcd-1=b-1c5 >

Subgroups: 440 in 110 conjugacy classes, 39 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, C2×C6, C42, C4⋊C4, C2×C8, C2×D4, C24, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, C8⋊C4, D4⋊C4, C42.C2, C41D4, Dic3⋊C4, C4⋊Dic3, C4×C12, C2×C24, C2×D12, C2×D12, C42.29C22, C2.D24, C3×C8⋊C4, C12.6Q8, C4⋊D12, C42.19D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C22×S3, C4.4D4, C8⋊C22, C2×D12, C4○D12, C42.29C22, C427S3, C8⋊D6, C42.19D6

Smallest permutation representation of C42.19D6
On 96 points
Generators in S96
(1 45 84 53)(2 34 85 66)(3 47 86 55)(4 36 87 68)(5 25 88 57)(6 38 89 70)(7 27 90 59)(8 40 91 72)(9 29 92 61)(10 42 93 50)(11 31 94 63)(12 44 95 52)(13 33 96 65)(14 46 73 54)(15 35 74 67)(16 48 75 56)(17 37 76 69)(18 26 77 58)(19 39 78 71)(20 28 79 60)(21 41 80 49)(22 30 81 62)(23 43 82 51)(24 32 83 64)
(1 78 13 90)(2 79 14 91)(3 80 15 92)(4 81 16 93)(5 82 17 94)(6 83 18 95)(7 84 19 96)(8 85 20 73)(9 86 21 74)(10 87 22 75)(11 88 23 76)(12 89 24 77)(25 51 37 63)(26 52 38 64)(27 53 39 65)(28 54 40 66)(29 55 41 67)(30 56 42 68)(31 57 43 69)(32 58 44 70)(33 59 45 71)(34 60 46 72)(35 61 47 49)(36 62 48 50)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 18 96 89)(2 88 73 17)(3 16 74 87)(4 86 75 15)(5 14 76 85)(6 84 77 13)(7 12 78 83)(8 82 79 11)(9 10 80 81)(19 24 90 95)(20 94 91 23)(21 22 92 93)(25 66 69 46)(26 45 70 65)(27 64 71 44)(28 43 72 63)(29 62 49 42)(30 41 50 61)(31 60 51 40)(32 39 52 59)(33 58 53 38)(34 37 54 57)(35 56 55 36)(47 68 67 48)

G:=sub<Sym(96)| (1,45,84,53)(2,34,85,66)(3,47,86,55)(4,36,87,68)(5,25,88,57)(6,38,89,70)(7,27,90,59)(8,40,91,72)(9,29,92,61)(10,42,93,50)(11,31,94,63)(12,44,95,52)(13,33,96,65)(14,46,73,54)(15,35,74,67)(16,48,75,56)(17,37,76,69)(18,26,77,58)(19,39,78,71)(20,28,79,60)(21,41,80,49)(22,30,81,62)(23,43,82,51)(24,32,83,64), (1,78,13,90)(2,79,14,91)(3,80,15,92)(4,81,16,93)(5,82,17,94)(6,83,18,95)(7,84,19,96)(8,85,20,73)(9,86,21,74)(10,87,22,75)(11,88,23,76)(12,89,24,77)(25,51,37,63)(26,52,38,64)(27,53,39,65)(28,54,40,66)(29,55,41,67)(30,56,42,68)(31,57,43,69)(32,58,44,70)(33,59,45,71)(34,60,46,72)(35,61,47,49)(36,62,48,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,18,96,89)(2,88,73,17)(3,16,74,87)(4,86,75,15)(5,14,76,85)(6,84,77,13)(7,12,78,83)(8,82,79,11)(9,10,80,81)(19,24,90,95)(20,94,91,23)(21,22,92,93)(25,66,69,46)(26,45,70,65)(27,64,71,44)(28,43,72,63)(29,62,49,42)(30,41,50,61)(31,60,51,40)(32,39,52,59)(33,58,53,38)(34,37,54,57)(35,56,55,36)(47,68,67,48)>;

G:=Group( (1,45,84,53)(2,34,85,66)(3,47,86,55)(4,36,87,68)(5,25,88,57)(6,38,89,70)(7,27,90,59)(8,40,91,72)(9,29,92,61)(10,42,93,50)(11,31,94,63)(12,44,95,52)(13,33,96,65)(14,46,73,54)(15,35,74,67)(16,48,75,56)(17,37,76,69)(18,26,77,58)(19,39,78,71)(20,28,79,60)(21,41,80,49)(22,30,81,62)(23,43,82,51)(24,32,83,64), (1,78,13,90)(2,79,14,91)(3,80,15,92)(4,81,16,93)(5,82,17,94)(6,83,18,95)(7,84,19,96)(8,85,20,73)(9,86,21,74)(10,87,22,75)(11,88,23,76)(12,89,24,77)(25,51,37,63)(26,52,38,64)(27,53,39,65)(28,54,40,66)(29,55,41,67)(30,56,42,68)(31,57,43,69)(32,58,44,70)(33,59,45,71)(34,60,46,72)(35,61,47,49)(36,62,48,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,18,96,89)(2,88,73,17)(3,16,74,87)(4,86,75,15)(5,14,76,85)(6,84,77,13)(7,12,78,83)(8,82,79,11)(9,10,80,81)(19,24,90,95)(20,94,91,23)(21,22,92,93)(25,66,69,46)(26,45,70,65)(27,64,71,44)(28,43,72,63)(29,62,49,42)(30,41,50,61)(31,60,51,40)(32,39,52,59)(33,58,53,38)(34,37,54,57)(35,56,55,36)(47,68,67,48) );

G=PermutationGroup([[(1,45,84,53),(2,34,85,66),(3,47,86,55),(4,36,87,68),(5,25,88,57),(6,38,89,70),(7,27,90,59),(8,40,91,72),(9,29,92,61),(10,42,93,50),(11,31,94,63),(12,44,95,52),(13,33,96,65),(14,46,73,54),(15,35,74,67),(16,48,75,56),(17,37,76,69),(18,26,77,58),(19,39,78,71),(20,28,79,60),(21,41,80,49),(22,30,81,62),(23,43,82,51),(24,32,83,64)], [(1,78,13,90),(2,79,14,91),(3,80,15,92),(4,81,16,93),(5,82,17,94),(6,83,18,95),(7,84,19,96),(8,85,20,73),(9,86,21,74),(10,87,22,75),(11,88,23,76),(12,89,24,77),(25,51,37,63),(26,52,38,64),(27,53,39,65),(28,54,40,66),(29,55,41,67),(30,56,42,68),(31,57,43,69),(32,58,44,70),(33,59,45,71),(34,60,46,72),(35,61,47,49),(36,62,48,50)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,18,96,89),(2,88,73,17),(3,16,74,87),(4,86,75,15),(5,14,76,85),(6,84,77,13),(7,12,78,83),(8,82,79,11),(9,10,80,81),(19,24,90,95),(20,94,91,23),(21,22,92,93),(25,66,69,46),(26,45,70,65),(27,64,71,44),(28,43,72,63),(29,62,49,42),(30,41,50,61),(31,60,51,40),(32,39,52,59),(33,58,53,38),(34,37,54,57),(35,56,55,36),(47,68,67,48)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A6B6C8A8B8C8D12A12B12C12D12E12F12G12H24A···24H
order12222234444446668888121212121212121224···24
size111124242224424242224444222244444···4

36 irreducible representations

dim11111222222244
type++++++++++++
imageC1C2C2C2C2S3D4D6D6C4○D4D12C4○D12C8⋊C22C8⋊D6
kernelC42.19D6C2.D24C3×C8⋊C4C12.6Q8C4⋊D12C8⋊C4C2×C12C42C2×C8C12C2×C4C4C6C2
# reps14111121244824

Matrix representation of C42.19D6 in GL6(𝔽73)

1550000
65720000
009185865
005564866
006686455
006558189
,
7200000
0720000
00665900
0014700
00006659
0000147
,
46480000
70270000
00007272
000010
0076600
0071400
,
27250000
0460000
0000667
0000147
0066700
0014700

G:=sub<GL(6,GF(73))| [1,65,0,0,0,0,55,72,0,0,0,0,0,0,9,55,66,65,0,0,18,64,8,58,0,0,58,8,64,18,0,0,65,66,55,9],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,66,14,0,0,0,0,59,7,0,0,0,0,0,0,66,14,0,0,0,0,59,7],[46,70,0,0,0,0,48,27,0,0,0,0,0,0,0,0,7,7,0,0,0,0,66,14,0,0,72,1,0,0,0,0,72,0,0,0],[27,0,0,0,0,0,25,46,0,0,0,0,0,0,0,0,66,14,0,0,0,0,7,7,0,0,66,14,0,0,0,0,7,7,0,0] >;

C42.19D6 in GAP, Magma, Sage, TeX

C_4^2._{19}D_6
% in TeX

G:=Group("C4^2.19D6");
// GroupNames label

G:=SmallGroup(192,272);
// by ID

G=gap.SmallGroup(192,272);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,254,387,142,1123,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=a^2*b^-1,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^-1*c^5>;
// generators/relations

׿
×
𝔽